If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-25x-8250=0
a = 10; b = -25; c = -8250;
Δ = b2-4ac
Δ = -252-4·10·(-8250)
Δ = 330625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{330625}=575$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-575}{2*10}=\frac{-550}{20} =-27+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+575}{2*10}=\frac{600}{20} =30 $
| -9h-9=-9+5h-14h | | 15x-8x+3x-10x+3x=12 | | -3(b+-5)=-21 | | 73,000/625=110,000/x | | 9t-6=10t+2 | | 2x+34+64=180 | | 5+(n-4)=3n+- | | 174+10x-6x=120+10x | | –2p-4=2 | | y+17=149 | | 11a-8a+3a-5a=8 | | 1/4h+9=3/4h-9 | | 9+g=g-6 | | -11+9x=2+11x | | -9-9h=-9h-9 | | 2x^2-5x-1650=0 | | 1x+3x=24.4 | | 12p-11p-p+4p-p=15 | | 12-11n=48-7n | | -10+8p=3p+10 | | -2f-1=-1-2f | | 15x-6=-5-5x | | -3=3n=9 | | -3u+8=-8u-7 | | 9+7d=10d-9 | | -11-(1/2-10x)=8 | | 12y-15=4-7y | | 15u-10u+u=6 | | 2^(5x-4)=18 | | -2u=-u-10 | | 1250+27.5x=1400+20x | | 15g-14g=11 |